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Abstract-The linearized equation of motion in matrix form of an Euler-Bernoulli inextensible
beam with initial curvature and a tip mass subjected to axial pulsating loads is formulated based on
Lagrangian approach and the assumed mode method. The effect of initial curvature is shown to be
contained in the kinetic energy of the tip mass as well as the work done by the axial loads, Using
Bolotin's method. the linearized equation of motion is converted to the standard form of an
eigenvalue problem for computing the principal instability regions. The initial curvature of the beam
is found to have no effect on the dynamic stability of the beam if there is no tip mass. The effects of
various prescribed initial shapes of the beam, the tip mass, the frequency and magnitude of load
perturbation on the stability behaviors are investigated for a simply supported beam,

INTRODUCTION

A slender beam with slight initial curvature subjected to tensile pulsating loads has been
shown by Carlson et at, (1980) to exhibit large principal regions of instability that resulted
in unacceptably large amplitudes of vibration, In their work, a simply supported inextensible
beam with a lumped mass and an axial spring at one end of the beam was analysed using
Euler beam theory. Terms involving the effect of initial curvature were contained in the
kinetic energy of the lumped mass, the potential energy of the spring as well as the work
done by the tensile load. Other related studies on the vibration of a beam with initial slight
curvature were reported by Yamaki and Mori (1980) and Yamaki et at. (1980) for the effect
of periodic loading on a beam with initial axial displacement and initial deflection, Plaut
and Johnson (1981) for the effect of initial thrust on the vibration of a shallow, sinusoidal
arch pinned at both ends, and Johnson (1982) for the effect of initial thrust on the vibration
of a shallow clamped circular arch. The relation between the induced axial force and the
initial curvature of an extensible beam subjected to prescribed axial end displacement was
reported by Dickinson (1980). The natural frequencies of simply supported and clamped
beams with initial curvature were subsequently presented by Kim and Dickinson (1986)
using Galerkin's method, Hanko (1990) analysed the effect of partial axial end restraints
and sliding end masses on the natural frequencies of an initially curved simply supported
beam, The partial axial end restraints were enforced by two axial springs at the two ends,
The beam was also assumed to be extensible, Saito and Koizumi (1982) investigated the
steady state response of a simply supported inextensible beam carrying a concentrated mass
at one end and subjected to a periodic axial displacement excitation at the other end under
the influence of gravity, Although the effect of "axial inertia" of the beam, which was
neglected in all the other reported studies. was included. the other more important effect of
"geometric stiffness" due to the axial shortening of the beam and the presence of axial
forces was not taken into consideration. The axial shortening due to the transverse bending
of the beam could be significant for a beam with initial curvature. The induced axial forces
on the beam could also be large for a beam with a heavy lumped mass subjected to high
frequency of excitation.

In these studies, the initial shape of the beam was always assumed to be in the form of
the first flexural mode for a simply supported beam. or was described by a combination of
simple sine and cosine functions approximating the first flexural mode for a clamped beam,
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Moreover, only the first unstable regions were provided in the stability studies. In this
paper, the linearized equation of motion in matrix form of an Euler-Bernoulli inextensible
beam with slight initial curvature subjected to pulsating axial loads is derived based on
Lagrangian approach and the assumed mode method. A lumped mass is also assumed to
be attached to one end of the beam. The linearized equation of motion is then converted
to the standard form of an eigenvalue problem using Bolotin's method for computing the
principal instability regions of the beam. The effects of various prescribed initial shapes of
the beam and the tip mass on the instability regions are examined in the present study.

THEORY AND FORMULATIONS

A simple model of a uniform inextensible beam of length L subjected to axial tensile
loads P is shown in Fig. 1. The term "inextensible" is commonly used [for example, Carlson
et al. (1980)] to describe a beam with the axial displacement of the beam caused solely by
its bending deflection. In other words, the potential energy of the beam consists only of the
bending strain energy and the potential energy caused by the "geometric stiffness" of the
beam due to the axial shortening and the presence of the axial forces. The remaining elastic
strain energy of the beam due to the axial elastic deformation is neglected. The reasons for
making this simplifying assumption will be presented in the following section. A lumped
mass ofmass M is attached to one end of the beam. The beam can be used as a simple model
for the slider in a slider-crank mechanism. A set of right-handed mutually perpendicular unit
vectors, 0b 02 and 03, is assumed to be fixed in the undeformed beam, with the 01 vector
parallel to a line passing through the two ends of the beam. The initial shape of the beam
is described by Yo(x). The deformed shape of the beam at any instant is denoted by y(x, t).
The initial curvature and subsequent deflections of the beam are assumed to be small for
the behavior of the beam to be described by the Euler-Bernoulli beam theory rather than
resorting to more elaborate curved beam theories usually used for analysing arches and arc
structures. Moreover, y - Yo is assumed to be very much smaller than Yo [see Hanko (1990)].
The deformation of the beam is assumed to be confined to the plane defined by 01 and 02'

The elastic strain energy of the beam due to bending is

(1)

where E and I are the Young's modulus and the central principal second moment of area
of the cross-section of the beam. The variable w is defined as

w=y-Yo· (2)

To compute the kinetic energy of the tip mass M, one must first obtain an expression
for the axial displacement at the tip mass given by

Fig. I. A beam with a prescribed initial curvature and a tip mass subjected to pulsating axial tensile
load.
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IlL ((OW)2 OYo OW)UL = - - +2 - - dx.
2 0 ax ax ax
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(3)

If the beam is not assumed to be inextensible, the above expression needs to be replaced
by

_~ rL ((OW)2 oYo OW) _ (p-MaL)L
UL - 2 Jo ax +2 ax ax dx EA . (4)

The last term is caused by the axial elastic deformation of the beam due to the axial
force (P - MaL) applied at the right end of the beam. The presence of such a term will
complicate the computation of UL unless there is no lumped mass. In the following deri­
vation, the axial rigidity EA is assumed to be large for the axial displacement due to the
axial elastic deformation of the beam. Such a beam is termed inextensible.

The derivation of eqn (3) can be found in the works by Carlson et al. (1980) and
Hanko (1990). A positive UL is defined to be in the opposite direction of the tensile load P.
Performing the time differentiation, lh is given by

(5)

The total kinetic energy T of the beam is

where m is the mass of the beam per unit length. The variable IV is defined by dw/dt.
Using the assumed mode method, the quantity w can be expressed as

n

W = L qJt)(jJ;(x),
i= I

(6)

(7)

where cPi are spatial functions that satisfy the prescribed geometric boundary conditions
for the two ends of the beam. Similarly, the quantity Yo can be expressed as

n

Yo = L qo,cPlx).
i= 1

(8)

From the assumed functions for wand Yo and assuming that Yo» w, the term ih in T
can be expressed in matrix form as

where Q is defined as

ilZ = 4T QqoqoT Q4 + higher order terms, (9)

(10)

Neglecting the higher order terms and dropping all the other terms that do not involve
q and 4, the kinetic energy T and strain energy V, for a beam with a slight initial curvature
can be expressed in matrix form as
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T I .TM· +lM'TS'= ;;mq q ;; q q (11)

(12)

The matrix S = QqoqoTQ. The matrices M and K are symmetric matrices defined as

(K),j = f' ¢;'¢; dx.
., 0

(13)

(14)

The functions ¢; and ¢;' denote the first and second derivatives of ¢, with respect to x.
The vectors q, qo and q are n x 1 column vectors.

The resulting Euler-Lagrange equation in matrix form is given by

d (aD c(T - v,)-- ~ - - ...._- = f.
dt oq cq

(15)

To obtain the generalized force vector f. one must first express the axial displacement
UL in matrix form as

(16)

The virtual work (j W of the axial tensile load P due to a virtual (jq is given by

(17)

There is a negative sign for P because a positive tensile load P is defined to be in the
opposite direction of the positive axial displacement UL due to the transverse deflection of
the beam. The generalized force vector f can be computed from

EW
f=~

tq

= - PQq - PQqo.

The resulting linearized equation of motion is

(mM+MS)q+(EIK+PQ)q = -PQqo.

For simplicity, the following dimensionless quantities are introduced:

(18)

(19)

The dimensionless wand Yo are given by

PL2

(J =--
EI'

M
/{=~.

mL
(20)
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)j'

11' = - =
L

1'0
1'0 =' =- L

"I q,(T)¢,(~)
'-e I

"I q..(T)4),(~}·
,~ I

(21 )

(22)

The resulting dimensionless equation of motion is

The matrices in the above equation are defined as

(1\1')" = I.' 4)<1) i d:"
."

(Q)/j = rl

¢;¢; d~.
J(I

(23)

(24)

(25)

(26)

The symmetric matrix S is equal to ()QoqtlQ,
As an example, the dimensionless natural frequencies of a simply supported beam with

various prescribed initial shapes and mass ratio h are to be presented, For a beam simply
supported at both ends. the assumed functions are

(27)

The factor of 'v 2 is to normalize the assumed functions. The matrix VI is equal to the
identity matrix due to the orthogonality of the assumed functions. The matrix K is a
diagonal matrix with diagonal elements equal to (in)"' for i = I /1. The matrix Q is also
a diagonal matrix with diagonal elements equal to (in)~ for i = I /1. The other matrices
can be computed using numerical integrations.

STABILITY ANALYSIS

The dimensionless tensile axial load (J is assumed to be of the form

(28)

where (Jo is the average dimensionless tensile axial load, (J, and (0 are the dimensionless
amplitude and frequency of the dimensionless sinusoidal load perturbation.

The stability analysis can be done by converting the homogeneous part of eqn (23)
with the above prescribed sinusoidal function for the variation in axial load in the form of
a second order differential equation with periodic coetlicients of Mathieu-Hill type [see
Masurekar and Gupta (1987); Takahashi (1981)] :

(29)

Using the method presented in Bolotin (1964). with additional references to subsequent
application of this method by Carlson et al. (1980) and Takahashi (1981), the principal
regions of instability of period 2T with T = 2n(0 can be sought with q in the form
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eire w"[
q- = csin- +dcos-

2 2 '
(30)

where c and d are arbitrary vectors.
Substituting eqn (30) into eqn (29) and equating the coefficients of the sin (w"[/2) and

cos (w"[/2) terms, a set of linear homogeneous algebraic equations in terms of c and d can
be obtained. The condition for non-trivial solutions is

1
-~W2(M+KS)+K+CToQ

det
~CTsQ

~CTsQ I
-~W2(M;KS)+K+CToQ = o.

(31 )

Instead of solving the above non-linear geometric equations for w, the equation can
be rearranged in the standard form of a generalized eigenvalue problem

(32)

The generalized eigenvalues (jjC of the above generalized eigenvalue problem can be
computed easily by any commercially available eigenvalue package.

There is a possibility that the initial shape .vo of the beam cannot be described by a
combination of the assumed modes for ~'f!. For example, the initial shape could resemble
the first mode of the free vibration of a clamped-damped beam. Such a shape function
could not be one of the assumed mode for ~V as it violates the geometric boundary condition
for the flexural vibration of the beam. For these cases,

n

f'o = I tio,("[)l/JJO·
i= I

The matrix S in eqn (29) needs to be modified as

with R defined by

NUMERICAL RESULTS AND DISCUSSION

(33)

(34)

(35)

The principal dynamic instability regions with period 2T for an inextensible beam
under tensile axial load perturbation with CTo= 4 and K = 0, 1, 10 and 100 are presented in
Fig. 2 using a 10-term approximation (n = 10) for w. This 10-term approximation function
has been found to give numerical results that have converged for the first three unstable
regions which are presented in the figure. Each of the unstable regions is bounded by two
curves originating from a common point on the waxis with CT, = O. The initial shape of the
beam is assumed to be the first assumed mode. As reflected in eqn (32), the unstable regions
are not affected by variations in the initial curvature (which is contained in matrix S) when
there is no tip mass (i.e. K = 0). When the tip mass is increased, the first unstable region
begins to be shifted to the left with smaller frequency of perturbation. The shifting of the
first unstable region becomes more pronounced when the tip mass is large. An interesting
phenomenon is that the remaining unstable regions remain relatively unaffected by vari­
ations in both the tip mass and the initial curvature.
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Fig. 2. The instability diagrams for an inextensible beam subjected to tensile pulsating axial loads.
The initial shape is the first assumed mode. --,Ii" 1 = 0.001 ; - - - -, <]01 = 0.005; ....., <]01 = 0.01.

(a) K = 0, (b) K = I, (c) K = 10, (d) K = 100.

The effects of the initial prescribed shape of the beam on the instability regions are
examined by specifying the initial shape to be the second and the third assumed modes.
The average tensile axial load 0'0 is still kept to be 4. Numerical results are shown respectively
in Figs 3 and 4. As expected, when there is no tip mass, the unstable regions are not affected
by changes in the amplitude of the initial shape. When the initial shape is described by the
second assumed mode of the beam, there is a large shift in the location of the second
unstable region for K > I (shown in Fig. 3), compared with the shifting of the first unstable
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Fig. 3. The instability diagrams for an inextensible beam subjected to tensile pulsating axial loads.
The initial shape is the second assumed mode -. fil!2 = 0.00 I. - - - -, fiG2 = 0.005; ..

C/O! = 0.01. (a)" = 0, (b)" = I. (cl" = 10, (d)" = 100.

region with the initial shape described by the first assumed mode (shown in Fig. 2). The
shifting becomes more pronounced when the tip mass is large. The larger shifting in the
unstable region is due in part to the larger prescribed initial curvature of the beam, as a
beam in the second assumed mode with a prescribed value of Q02 has a larger curvature
than a beam in the first assumed mode with the same prescribed value of qOl. However, the
curvature of the beam is still kept to be small (Q02 :( 0.01) so as not to violate the assumption
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Fig. 4. The instability diagrams for an inextensible beam subjected to tensile pulsating axial loads.
The initial shape is the third assumed mode. --, lio) = 0.001; - - - -, lio) = 0.005;

lio) = 0.01. (a) K = 0, (b) K = I, (c) K = 10, (d) K = 100.

of small curvature. When the tip mass is large (for example, K = 100), the shifting of the
second unstable region may be large enough to make the frequency of perturbation smaller
than the frequency of perturbation for the first unstable region with no tip mass. Once
again, the remaining unstable regions remain relatively unaffected by variations in both the
tip mass and the initial curvature. Similar conclusions can be drawn from the numerical
results shown in Fig. 4 for the initial shape of the beam in the third assumed mode. The
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Fig. 5. The instability diagrams for an inextensible beam subjected to compressive pulsating axial
loads. The initial shape is the first assumed mode. --, qo I = 0.00 I ; - - - -, {Jo I = 0.005; .... "

{JOI = 0.01. (a) K = 0, (b) K = I, (c) K = 10, (d) K = 100.

first two unstable regions, counted when there is no tip mass, remain unaffected while the
third unstable region is shifted to the left with decreasing frequency of perturbation when
the tip mass and the amplitude i'j03 are increased.

The effects of compressive axial pulsating loads on the instability diagrams are shown
in Figs 5-7 for (To = -4. The first critical Euler buckling load for a simply supported beam
is (T = rr.2• This value of (To = -4 will ensure that the compressive axial loads are smaller
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Fig. 6. The instability diagrams for an inextensible beam subjected to compressive pulsating axial
loads. The initial shape is the second assumed mode. --, iJo2 = 0.001 ; -_. -, iJ02 = 0.005; .....

iJ02 = 0.01. (a) K = 0, (b) K = I, (c) K = 10. (d) K = 100.

than the first critical buckling load at all times. This is also the reason as to why (1"0 = 4 for
the numerical results presented in Figs 2-4. This is to allow for simple comparisons of the
graphical results in Figs 2-4 with the present numerical results for compressive axial
pulsating loads. As expected, it can be seen from Figs 5-7 that all the unstable regions are
shifted to the left with smaller frequency of perturbation due to the compressive axial loads
compared with the corresponding unstable regions shown in Figs 2-4 for a beam subjected
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Fig. 7. The instability diagrams for an inextensible beam subjected to compressive pulsating axial
loads. The initial shape is the third assumed mode. --, iJ03 = 0.00 I ; - - - - , iJo 3 = 0.005; ..

iJ03 = 0.01. (a) K = O. (b) K = I, (c) K = 10, (d) K = 100.

to tensile axial loads. Besides this finding, the same phenomenon of shifting of the unstable
regions is observed with regards to variations in tip mass and the prescribed initial shape
of the beam. If the initial prescribed shape of the beam is the pth assumed mode, the pth
unstable region, counted for a beam with no tip mass, is shifted to the left with smaller
frequency of perturbation when the tip mass is larger and the initial curvature of the beam
is increased. The remaining unstable regions remain relatively unaffected.



Eflects of initial curvature on the dynamic stability of a beam

(a)

0.8

0.6

0.4

3389

0.2

o'---~~-----'---~ -~--- .L-_----''-'-_

o 20 40 60 80 100 120 140 160 180 200

(b)

1
J

I

0.8

0.6

0.4

0.2

oo 20 40 60 80 100 120 140 160 180 200

10'./0'01
(c)

0.8 ' ,

0.6
"

0.4 "

0.2 ",

0
0 20 40 60 80 100 120 140 160 180 200

(d)

•

"

0.8
"0.6
""

0.4 "
"

0.2
,

0
80 100 120 140 160 180 2000 20 40 60

W

Fig. 8. The instability diagrams for an inextensible beam subjected to tensile pulsating axial loads.
The initial shape is a combination of the first and the second assumed modes. __ ,
qOl = q02 = 0.001 :----·ijU[ = ij02 = 0.005;' . ·.ij"l = iju2 = 0.01. (a) K = 0, (b) K = I, (c) K = 10,

(d) K = 100.

The instability diagrams for a beam subjected to tensile axial pulsating loads (0"0 = 4)
with the initial shape described by a combination of the first and the second assumed modes
are shown in Fig. 8. It can be seen that both the first and the second unstable regions are
affected by the changes in the amplitude of the prescribed initial shape, especially for a
large lumped mass. However, if comparisons are made between Fig. 8(d) with that of Fig.
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2(d) and Fig. 3(d), it can be seen that the locations of the unstable regions are quite
different. The main reason is that for such a beam with the initial shape given by a
combination of the assumed modes, the S matrix is no longer a diagonal matrix as CioCiJ
within the S matrix is not a diagonal matrix, although Q remains a diagonal matrix due to
the orthogonality of the assumed functions.

The case of a beam with the initial shape Yo different from any of the assumed modes
for w is examined with the initial shape described respectively by the normalized first and
second modes for the free vibration of a clamped-damped beam and a clamped-simply
supported beam. These various cases of prescribed initial shapes of the beam are plotted
with the first and the second assumed mode shapes for w in Fig. 9. The instability diagrams
for a beam with a large lumped mass (K = 100) subjected to tensile axial pulsating loads
(G"o = 4) are shown in Fig. 10. It can be seen from Fig. lO(a,b) that the second unstable
regions are affected more significantly by the variation in the amplitude of the initial shape
when the initial shape is in the form of the first or second mode of a clamped-clamped
beam. However, the first and the third unstable regions are relatively unaffected by variation
in the amplitude of the initial shape. On the other hand, when the initial shape is in the
form of the first or the second mode for the free vibration of a clamped-simply supported
beam [Fig. lO(c,d)], all of the first three unstable regions are affected by variation in the
amplitude of the initial shape. Therefore, it can be concluded in general that if the initial
shape is not in the form ofcombinations of any of the assumed modes for w, all the unstable
regions are likely to be affected by variation in the amplitude of the initial shape. Numerical
results for other forms of initial shapes can also be easily computed using the present
formulation.

CONCLUSION

The linearized equation of motion in matrix form of an inextensible Euler-Bernoulli
beam with initial curvature subjected to pulsating axial load has been formulated based on
Lagrangian approach and the assumed mode method. A tip mass is assumed to be attached



Effects of initial curvature on the dynamic stability of a beam 3391

(a)

0.8

0.6

0.4

0.2

OL-_--'-l----'--'--_~____"___.L__ __"___...i.__ __'____'_'__ _____J

o 20 40 60 80 100 120 140 160, 180 200

(bl

0.8

0.6

0.4

0.2

..

:

.

O'--------'-"'-------'-----L..----'-J.---L----'----'---..........----'----'
o 20 40 60 80 100 120 140 160 180 200

(c)

200160 18014012010080604020

: I I
j l I r

0.8 " 'j!
0.6 I j

"II II

0.4" '"
;11

0.2: : ;

o'--__L.L._~'--_ _____'_'---'-'-----'-----'-----'---~-:~' ~-------'

o

(dl

0.8

0.6

0.4

0.2

..

"
""
"
"
""
"""
"".
,
,

: i~ :

"

"

"
"
"···,OL-_~L__-"-'-_---"____LL---'~.L__.......L___'___ __'...i.__ _'__ _____J

o 20 40 60 80 100 120 140 160 180 200

W

Fig. 10. The instability diagrams for an inextensible beam subjected to tensile pulsating axial loads
with K = 100. --, gOI = 0.001; ----, gOI = 0.005;·····, gOI = 0.01. The initial shape i(J1 is (a)
the first mode of a clamped-damped beam, (b) the second mode of a clamped-damped beam. (c)
the first mode of a clamped-simply supported beam. (d) the second mode of a clamped-simply

supported beam.

to the end of the beam. The effects of initial curvature are found to be contained in the
kinetic energy of the tip mass as well as the work done by the axial loads. The equation of
motion is then converted to the standard form of an eigenvalue problem for computing the
principal instability regions using Bolotin's method. The prescribed initial shape of the
beam is found to have no effect on the stability of the beam when there is no tip mass.
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When there is a tip mass, the effect of the initial curvature of the beam becomes more
pronounced with increased curvature of the beam. Moreover, the initial prescribed shape
of the beam may drastically affect the instability regions of the beam with a tip mass. If the
initial prescribed shape of the beam is the pth assumed mode, the pth unstable region
(counted for a beam with no tip mass) is shifted to the left with smaller frequency of
perturbation when the tip mass is larger and the initial curvature of the beam is increased.
The remaining unstable regions remain relatively unaffected. As expected, an increase in
the average compressive axial loads tends to shift the unstable regions to the left with
smaller frequency of perturbation.
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